Multi-domain Fourier-continuation/WENO hybrid solver for conservation laws
نویسندگان
چکیده
We introduce a multi-domain Fourier-Continuation/WENO hybrid method (FCWENO) that enables high-order and non-oscillatory solution of systems of nonlinear conservation laws, and which enjoys essentially dispersionless, spectral character away from discontinuities, as well as mild CFL constraints (comparable to those of finite difference methods). The hybrid scheme employs the expensive, shock-capturing WENO method in small regions containing discontinuities and the efficient FC method in the rest of the computational domain, yielding a highly effective overall scheme for applications with a mix of discontinuities and complex smooth structures. The smooth and discontinuous solution regions are distinguished using the multi-resolution procedure of Harten [J. Comput. Phys. 115 (1994) 319-338]. We consider WENO schemes of formal orders five and nine and a FC method of order five. The accuracy, stability and efficiency of the new hybrid method for conservation laws is investigated for problems with both smooth and non-smooth solutions. In the latter case, we solve the Euler equations for gas dynamics for the standard test case of a Mach three shock wave interacting with an entropy wave, as well as a shock wave (with Mach 1.25, three or six) interacting with a very small entropy wave and evaluate the efficiency of the hybrid FC-WENO method as compared to a purely WENO-based approach as well as alternative hybrid based techniques. We demonstrate considerable computational advantages of the new FC-based method, suggesting a potential of an order of magnitude acceleration over alternatives when extended to fully three-dimensional problems.
منابع مشابه
Multi-dimensional hybrid Fourier continuation-WENO solvers for conservation laws
We introduce a multi-dimensional point-wise multi-domain hybrid Fourier-Continuation/WENO technique (FC-WENO) that enables high-order and non-oscillatory solution of systems of nonlinear conservation laws, and essentially dispersionless, spectral, solution away from discontinuities, as well as mild CFL constraints for explicit time stepping schemes. The hybrid scheme conjugates the expensive, s...
متن کاملA General High-order Multi-domain Hybrid Dg/weno-fd Method for Hyperbolic Conservation Laws
In this paper, a general high-order multi-domain hybrid DG/WENO-FDmethod, which couples a p-order (p ≥ 3) DG method and a q-order (q ≥ 3) WENO-FD scheme, is developed. There are two possible coupling approaches at the domain interface, one is non-conservative, the other is conservative. The non-conservative coupling approach can preserve optimal order of accuracy and the local conservative erro...
متن کاملMulti-domain hybrid spectral-WENO methods for hyperbolic conservation laws
In this article we introduce the multi-domain hybrid Spectral-WENO method aimed at the discontinuous solutions of hyperbolic conservation laws. The main idea is to conjugate the non-oscillatory properties of the high order weighted essentially non-oscillatory (WENO) finite difference schemes with the high computational efficiency and accuracy of spectral methods. Built in a multi-domain framewo...
متن کاملHybrid Compact-WENO Finite Difference Scheme with Conjugate Fourier Shock Detection Algorithm for Hyperbolic Conservation Laws
For discontinuous solutions of hyperbolic conservation laws, a Hybrid scheme, based on the high order nonlinear characteristic-wise weighted essentially non-oscillatory conservative finite difference (WENO) scheme and the high resolution spectral-like linear compact finite difference (Compact) scheme, is developed for capturing shock and strong gradients accurately and resolving smooth scale st...
متن کاملFinite-volume Weno Schemes for Three-dimensional Conservation Laws
The purpose of this paper is twofold. Firstly we carry out an extension of the finite-volume WENO approach to three space dimensions and higher orders of spatial accuracy (up to eleventh order). Secondly, we propose to use three new fluxes as a building block in WENO schemes. These are the one-stage HLLC [29] and FORCE [24] fluxes and a recent multistage MUSTA flux [26]. The numerical results i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011